wyklad 4 c, Metody numeryczne, metody numeryczne
[ Pobierz całość w formacie PDF ]
5R]ZLQLĊFLHZV]HUHJ7D\ORUD
-DNRELDQ
1RWDFMDPDFLHU]RZD
3U]\MPXMHP\
6WÖG
7U]HEDUR]ZLÖ]DØSRZ\ŬV]\XNIJDGUÄZQDĴOLQLRZ\FK
1HZWRQVPHWKRGIRUVHYHUDOYDULDEOHV
1HZWRQVPHWKRGPD\DOVREHXVHGWRILQGDURRWRIDV\VWHPRIWZRRUPRUHQRQ
OLQHDUHTXDWLRQV
f(x,y)
=0
g(x,y)
=0,
ZKHUHIDQGJDUH&
IXQFWLRQVRQDJLYHQGRPDLQ8VLQJ7D\ORUVH[SDQVLRQRIWKH
WZRIXQFWLRQVQHDU[\ZHILQG
f(x+h,y+k) =f(x,y)+h
x
f
f
+k
y
+O(h
2
+k
2
)
g(x+h,y+k) =g(x,y)+h
x
g
g
+k
y
+O(h
2
+k
2
)
DQGLIZHNHHSRQO\WKHILUVWRUGHUWHUPVZHDUHORRNLQJIRUDFRXSOHKNVXFKDV
f(x+h,y+k)
=0 ! f(x,y)+h
x y
f
f
+k
g(x+h,y+k) =0 ! g(x,y)+h
x y
g
+k
g
KHQFHLWVHTXLYDOHQWWRWKHOLQHDUV\VWHP
"#
$#
$#
$#
$#
$#
%#
f f
&#
'#
'#
'#
'#
'#
(#
x
y
"#
$#
%#
h
&#
'#
(#
"#
$#
%#
f(x,y)
&#
'#
(#
=)
.
g
g
k
g(x,y)
x
y
7KHÈPDWUL[LVFDOOHGWKH-DFRELDQPDWUL[ RU-DFRELDQ DQGLVVRPHWLPHV
GHQRWHG
J(x,y)=
"#
$#
$#
$#
$#
$#
%#
f f
x
y
&#
'#
'#
'#
'#
'#
(#
g g
x
y
LWVJHQHUDOL]DWLRQDVD1È1PDWUL[IRUDV\VWHPRI1HTXDWLRQVDQG1YDULDEOHVLV
LPPHGLDWH7KLVVXJJHVWWRGHILQHWKHQHZSURFHVV
"#
$#
%#
x
n+1
&#
'#
(#
"#
$#
%#
x
n
&#
'#
(#
)1
"#
$#
%#
f(x ,y )
&#
'#
(#
=
)J (x ,y
n n
)
y
n+1
y
n
g(x
n
,y
)
n
VWDUWLQJZLWKDQLQLWLDOJXHVV[
DQGXQGHUFHUWDLQFRQGLWLRQVZKLFKDUHQRWVR
\
HDV\WRFKHFNDQGWKLVLVDJDLQWKHPDLQGLVDGYDQWDJHRIWKHPHWKRGLWVSRVVLEOHWR
VKRZWKDWWKLVSURFHVVFRQYHUJHVWRDURRWRIWKHV\VWHP7KHFRQYHUJHQFHUHPDLQV
TXDGUDWLF
([DPSOH:HDUHORRNLQJIRUDURRWQHDU[
)
\ RIWKHIRORZLQJV\VWHP
g(x,y)
=3x
2
y)y
3
,
KHUHWKH-DFRELDQDQGLWVLQYHUVHEHFRPH
n n
f(x,y)
=x
3
)3xy
2
)1
"#
$#
%#
x )y )2x y
2
2
&#
'#
(#
n
n
n
n
J(x ,y ) =3
n n
2
2
2x y
x )y
n
n
n
n
"#
$#
%#
x )y
2
2
2x y
&#
'#
(#
1
3( x
n
2
+y
n
2
)
2
n
n
n
n
J
)1
(x
n
,y
n
)
=
)2x y x )y
n
n
n
2
n
2
DQGWKHSURFHVVJLYHV
x
=)0.40000000000000000000,y
1
=0.86296296296296296296
x =)0.50478978186242263605,y
2
=0.85646430512069295697
x =)0.49988539803643124722,y
3
=0.86603764032215486664
x
=)0.50000000406150565266,y
4
4
=0.86602539113638168322
x
=)0.49999999999999983928,y
5
5
=0.86602540378443871965
...
'HSHQGLQJRQ\RXULQLWLDOJXHVV1HZWRQVSURFHVVPD\FRQYHUJHWRRQHRIWKHWKUHH
URRWVRIWKHV\VWHP
()1/2,*3/2),()1/2,)*3/2),(1,0),
DQGIRUVRPHYDOXHVRI[\WKHFRQYHUJHQFHRIWKHSURFHVVPD\EHWULFN\7KH
VWXG\RIWKHLQIOXHQFHRIWKLVLQLWLDOJXHVVOHDGVWRDHVWKHWLFIUDFWDOSLFWXUHV
&XELFFRQYHUJHQFHDOVRH[LVWVIRUVHYHUDOYDULDEOHVV\VWHPRIHTXDWLRQV
&KHE\VKHYVPHWKRG
3U]\NIJDG\GRUR]ZLÖ]DQLD
1
2
3
[ Pobierz całość w formacie PDF ]